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We outline the steps of least squares estimation in ARM.

Example Data and Analysis of Variance

Consider an example randomized complete block design with missing data, from (Giesbrecht and Gumpertz
2004).

Table 1: Simulated Data for RCBD with Four Blocks, Six Treat-
ments and Two Missing Observations

Block 1 2 3 4 5 6
1 - 2.66 2.80 3.43 5.25 6.47
2 - 6.41 7.04 6.09 5.69 8.43
3 4.93 6.07 6.19 3.26 4.99 5.95
4 3.13 4.48 5.22 6.71 6.34 7.35
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data(Geisbrecht)
Table5.7 <- subset(Table5.7,!is.na(Table5.7$obs))
head(Table5.7)

## plot rep col trt obs
## 1 101 1 1 4 3.43
## 2 102 1 2 5 5.25
## 3 103 1 3 6 6.47
## 4 104 1 4 3 2.80
## 6 106 1 6 2 2.66
## 7 201 2 1 6 8.43
tbl5.7.lm <- lm(obs ~ trt + rep, data=Table5.7)
tbl5.7.aov <- aov(tbl5.7.lm)

TrialName="Trial"

Analysis of Variance, Simulated Data for RCBD with Four Blocks, Six Treat-
ments and Two Missing Observations

summary(tbl5.7.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## trt 5 16.88 3.376 2.568 0.0793 .
## rep 3 17.57 5.858 4.456 0.0232 *
## Residuals 13 17.09 1.315
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ARM R AOV

res.mar <- analyze.ARM.rcb(d=Table5.7,response="obs", TrtName="trt", RepName="rep")
make.table(res.mar$AovVar)

## Df SS MS Fval prF
## Treatment 5 16.87941 3.375881 2.567911 0.07927654
## Rep 3 17.57459 5.858196 4.456118 0.02316320
## Error 13 17.09034 1.314641 NA NA

AOV Means Table, Simulated Data for RCBD with Four Blocks, Six Treatments
and Two Missing Observations

mns.tbl <- data.frame(Arith=res.mar$raw_means,LSMean=res.mar$ls_means$means)
mns.tbl

## Arith LSMean
## 1 4.0300 3.9155
## 2 4.9050 4.9050
## 3 5.3125 5.3125
## 4 4.8725 4.8725
## 5 5.5675 5.5675
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## 6 7.0500 7.0500

How does ARM compute adjusted means for this data?

Means estimates for treatments 1-6, µ̂ = µ̂1 . . . µ̂6, are calculated as a linear combination of the least squares
estimate of parameters associated with treatments and blocks, such that

µ̂ = Lβ̂
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2.4960
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1.6873



t

=


3.9155
4.9050
5.3125
4.8725
5.5675
7.0500



LS linear combinations

These values are returned from the ARMR functions as members of an object:
res.mar$ls_means$L

## 2 3 4 5 6
## 1 1 0 0 0 0 0 0.25 0.25 0.25
## 2 1 1 0 0 0 0 0.25 0.25 0.25
## 3 1 0 1 0 0 0 0.25 0.25 0.25
## 4 1 0 0 1 0 0 0.25 0.25 0.25
## 5 1 0 0 0 1 0 0.25 0.25 0.25
## 6 1 0 0 0 0 1 0.25 0.25 0.25

Table:

β

res.mar$ls_means$beta

## (Intercept) trt2 trt3 trt4 trt5 trt6
## 2.496000 0.989500 1.397000 0.957000 1.652000 3.134500
## rep2 rep3 rep4
## 2.610000 1.380667 1.687333
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Variance-Covariance

res.mar$varCov

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.5477672 -0.10955344 -0.10955344 -0.10955344 -0.10955344
## [2,] -0.1095534 0.28483894 -0.04382138 -0.04382138 -0.04382138
## [3,] -0.1095534 -0.04382138 0.28483894 -0.04382138 -0.04382138
## [4,] -0.1095534 -0.04382138 -0.04382138 0.28483894 -0.04382138
## [5,] -0.1095534 -0.04382138 -0.04382138 -0.04382138 0.28483894
## [6,] -0.1095534 -0.04382138 -0.04382138 -0.04382138 -0.04382138
## [,6]
## [1,] -0.10955344
## [2,] -0.04382138
## [3,] -0.04382138
## [4,] -0.04382138
## [5,] -0.04382138
## [6,] 0.28483894

Information Matrix

res.mar$A

## 1 2 3 4 5 6
## 1 1.6666667 -0.3333333 -0.3333333 -0.3333333 -0.3333333 -0.3333333
## 2 -0.3333333 3.2666667 -0.7333333 -0.7333333 -0.7333333 -0.7333333
## 3 -0.3333333 -0.7333333 3.2666667 -0.7333333 -0.7333333 -0.7333333
## 4 -0.3333333 -0.7333333 -0.7333333 3.2666667 -0.7333333 -0.7333333
## 5 -0.3333333 -0.7333333 -0.7333333 -0.7333333 3.2666667 -0.7333333
## 6 -0.3333333 -0.7333333 -0.7333333 -0.7333333 -0.7333333 3.2666667

Concurrence

res.mar$concurrence

## 1 2 3 4 5 6
## 1 2 0 0 0 0 0
## 2 0 4 0 0 0 0
## 3 0 0 4 0 0 0
## 4 0 0 0 4 0 0
## 5 0 0 0 0 4 0
## 6 0 0 0 0 0 4

Parameters describing this experiment (i.e. treatment and block effects), β̂ are estimated to minimize the
residual SS, given by

SSRes = (Y −Xβ̂)T (Y −Xβ̂)

where Y is the set of observations in table 1 and X represents the details of the experimental design for this
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data. Specifically,

Y =



4.93
3.13
2.66
6.41
6.07
· · ·

7.35


, X =



1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0
...

...
...

...
...

...
...

...
...

1 0 0 0 0 1 0 0 1


For both X and L, column 1 represents an intercept, columns 2-6 indicate treatment number and columns 7-9
indicate replicates. More generally, both can be thought of as a combination of three matrices; one for grand
mean, one representing treatment structure and one for blocking, for example,

X = X0|X1|X2

The difference is that each row in X represents a unique value in Y, while rows in L are unique only for
treatment parameters and average over the remaining parameters of β̂. In this case, since β̂ is estimated
using ordinary least squares methods, the parameters estimated by µ̂ are commonly called least squares
(treatment) means.

How does ARM find β̂ ?

If X were a square matrix, then an exact solution β for can be found by inverting and multiplying,

β = X−1Y

However, for most real data, there are more rows than columns in X and no unique inverse can be found,
thus no exact solution for β. However, an estimate β̂ can be obtained, and the preferred estimate minimizes
residual SS. The result is the ordinary least squares estimate of β.

ARM calls an external mathematical library (CLAPACK) function (dgelsd) to find this solution using
singular-value decomposition. ARM ST calls the R lm function, which uses QR factorization. Both methods
produce identical results (within rounding error) in most cases.

Why are there only 5 treatment columns in X (and only 3 replicate
columns)?

Consider a matrix with columns for grand mean, each treatment effect and each replicate effect:

X∗ =



1 1 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 1 0
...

...
...

...
...

...
...

...
...

...
...

1 0 0 0 0 0 1 0 0 0 1


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We can see that the first column is redundant; it is simply the sum of the next 6 columns. Further, one of
the last four columns is redundant in that it can be expressed as a linear combination of the other three
X∗i,8 = 1−

∑
(X∗i,9 . . . X∗i,11). This complicates finding solutions for X, so we remove redundant columns by

using an effects encoding. ARM use an encoding that represents to the lowest level of each effect as the
intercept (that is, column one represents treatment 1 in replicate 1), removing the corresponding coefficients
from β. This convention is typically the default used in R, while SAS encodes the intercept as the highest-
numbered level of each effect. Using this coding scheme, we see that the number of columns required for
treatments (5) and replicates (3) are equal to the number of degrees of freedom for treatments and replicates,
respectively, in Table 2.

How does ARM perform mean separations?

Consider first comparisons using LSD. ARM computes an LSD table, with entries for each treatment, such
that the LSD for comparing treatments i and j are given by

LSDi,j = tα/2,ν
√
Vi,i + Vj,j − Vi,j − Vj,i

where

V = A−1σ2

=


0.55477 −0.10955 · · · −0.10955
−0.10955 0.28484 · · · −0.04382

...
...

. . .
...

−0.10955 −0.04382 0.28484


The information matrix A is given by

A = X1 ×Xt
1 −NX2 ×Xt

2
−1
N t

=


1.66667 −0.33333 · · · −0.33333
−0.33333 3.26666 · · · −0.73333

...
...

. . .
...

−0.33333 −0.73333 · · · 3.26666


Where N describes the coincidence of treatments (X1) with blocks (X2), N = Xt

1X2.
TreatmentX <- incidence.matrix(Table5.7,effect="trt")
RepNoZ <- incidence.matrix(Table5.7,effect="rep")

N <- t(TreatmentX) %*% RepNoZ
head(N)

## 1 2 3 4
## 1 0 0 1 1
## 2 1 1 1 1
## 3 1 1 1 1
## 4 1 1 1 1
## 5 1 1 1 1
## 6 1 1 1 1

John and Williams (John and Williams 1995) use the notation tδ to denote the replication matrix. In the
balanced case, this matrix gives the replications of t.
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t_delta <- t(TreatmentX) %*% TreatmentX
head(t_delta)

## 1 2 3 4 5 6
## 1 2 0 0 0 0 0
## 2 0 4 0 0 0 0
## 3 0 0 4 0 0 0
## 4 0 0 0 4 0 0
## 5 0 0 0 0 4 0
## 6 0 0 0 0 0 4

v−δ is the inverse of vδ. This can be thought of as determining the amount of information contained in
replicates. This will be subtracted from the information represented by the total number of observations of
each treatment, tδ. If the data are balanced, we could simply divide, N ×N ′/v, but when data are unbalanced
this division is biased.
v_delta <- t(RepNoZ) %*% RepNoZ
v_delta_inv <- solve(v_delta)
v_delta_inv

## 1 2 3 4
## 1 0.2 0.0 0.0000000 0.0000000
## 2 0.0 0.2 0.0000000 0.0000000
## 3 0.0 0.0 0.1666667 0.0000000
## 4 0.0 0.0 0.0000000 0.1666667

A gives us representation of the effective number of replicates for each treatment; the total number of
replicates minus an adjustment for observations made in common with other treatments (or, alternately,
treatment observations confounded by block effects.)
A <- t_delta + N %*% v_delta_inv %*% t(N)
Ainv <- pseudoinverse(A)

For means comparisons, we divide our error term, σ by the effective replication
ems <- 1.314641
varCov <- Ainv * ems
varCov

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.58147583 -0.02528156 -0.02528156 -0.02528156 -0.02528156
## [2,] -0.02528156 0.29832238 -0.03033787 -0.03033787 -0.03033787
## [3,] -0.02528156 -0.03033787 0.29832238 -0.03033787 -0.03033787
## [4,] -0.02528156 -0.03033787 -0.03033787 0.29832238 -0.03033787
## [5,] -0.02528156 -0.03033787 -0.03033787 -0.03033787 0.29832238
## [6,] -0.02528156 -0.03033787 -0.03033787 -0.03033787 -0.03033787
## [,6]
## [1,] -0.02528156
## [2,] -0.03033787
## [3,] -0.03033787
## [4,] -0.03033787
## [5,] -0.03033787
## [6,] 0.29832238
vcov(lmer(obs ~ trt + (1 | rep), data=Table5.7))

## 6 x 6 Matrix of class "dpoMatrix"
## (Intercept) trt2 trt3 trt4 trt5
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## (Intercept) 0.9328203 -0.7101096 -0.7101096 -0.7101096 -0.7101096
## trt2 -0.7101096 1.0397308 0.7101096 0.7101096 0.7101096
## trt3 -0.7101096 0.7101096 1.0397308 0.7101096 0.7101096
## trt4 -0.7101096 0.7101096 0.7101096 1.0397308 0.7101096
## trt5 -0.7101096 0.7101096 0.7101096 0.7101096 1.0397308
## trt6 -0.7101096 0.7101096 0.7101096 0.7101096 0.7101096
## trt6
## (Intercept) -0.7101096
## trt2 0.7101096
## trt3 0.7101096
## trt4 0.7101096
## trt5 0.7101096
## trt6 1.0397308

This formulation introduces an approximation for the effective number of replicates (see (Steel and Torrie
1960), p 213) when data are unbalanced and increases the error term when means with missing observations
are compared. A similar method is used for Tukey’s HSD.

For multiple range tests, the harmonic mean of treatment replicates (Milliken and Johnson 1992) is used as
an “effective number of replicates” term. For example, the critical value for Duncan’s MRT is HSDi,j =
q(αp, t, ν) × σ

√
ñ where ñ = t(1n1 + 1n2 + 1nt)( − 1) The individual nt values are taken from the main

diagonal of Xt
1X1.

For comparison, we can use the ‘agricolae’ package to provide LSD and HSD tests.
library(agricolae)
LSD.test(aov(tbl5.7.lm),trt="trt")
HSD.test(aov(tbl5.7.lm),trt="trt")

We can also use multcomp for all pairwise comparison, comparable to Tukey’s test,
comp <- glht(aov(tbl5.7.lm), linfct = mcp(trt = "Tukey"))
summary(comp)

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: aov(formula = tbl5.7.lm)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 2 - 1 == 0 0.9895 1.0255 0.965 0.9201
## 3 - 1 == 0 1.3970 1.0255 1.362 0.7449
## 4 - 1 == 0 0.9570 1.0255 0.933 0.9297
## 5 - 1 == 0 1.6520 1.0255 1.611 0.6030
## 6 - 1 == 0 3.1345 1.0255 3.056 0.0772 .
## 3 - 2 == 0 0.4075 0.8107 0.503 0.9951
## 4 - 2 == 0 -0.0325 0.8107 -0.040 1.0000
## 5 - 2 == 0 0.6625 0.8107 0.817 0.9585
## 6 - 2 == 0 2.1450 0.8107 2.646 0.1523
## 4 - 3 == 0 -0.4400 0.8107 -0.543 0.9930
## 5 - 3 == 0 0.2550 0.8107 0.315 0.9995
## 6 - 3 == 0 1.7375 0.8107 2.143 0.3219
## 5 - 4 == 0 0.6950 0.8107 0.857 0.9496
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## 6 - 4 == 0 2.1775 0.8107 2.686 0.1427
## 6 - 5 == 0 1.4825 0.8107 1.829 0.4787
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
cld(comp)

## 1 2 3 4 5 6
## "a" "a" "a" "a" "a" "a"

How does ARM compute Treatment (adjusted) Sums of Squares?

Once we’ve obtained we can partition variance (as sums of squares) using common matrix algebra formula,
adapted from (Schabenberger and Pierce 2001), p.98:

Table 2: Partitioning variance from linear models.

Source DF SS

Model rank(X)− 1 β̂X ′Y − nȲ 2

Error n− rank(X) Y ′Y − β̂X ′Y
Total n Y ′Y − nȲ 2

where nY Ȳ 2 is a correction factor for the mean and rank(X) is the number of columns (m) in X. When β̂ is
estimated using SVD, we use the effective rank of X, which does not include aliased (redundant) columns.
This simplifies working with missing data. To partition sums of squares, we find the model SS for a reduced
model then subtract. For example, to compute replicate sums of squares, we fit to both RCB(X = X0|X1|X2)
and CRD(X = X0|X1) models. Since the RCB model includes both treatment and replicate effects, while
the CRD model contains treatments only, the difference in model SS of the two is attributable to replicates,

ModelCRDSS = SSTrt

ModelRCBSS = SS(Trt+Rep)

SSRep = ModelRCBSS −ModelCRDSS

However, if the data are not balanced, then there will be some confounding among effects. If we fit a
block-only model (X = X0|X2), the model SS will not equal as found by subtraction above. Remember
that the effect of specific block is calculated based on observations taken from treatments appearing in that
block; a block effect will in inflated if a low-scoring treatment is missing (or vice-versa). Thus, to provide a
treatment SS, adjusted for confounding replicate effects, we must also estimate a block-only model,

SSTrt(adj) = ModelRCBSS −ModelBlockSS

How are non-RCB designs modeled in ARM?

CRD designs lack a blocking structure, so no X2 matrix is required. Thus, treatment least square means are
identical to arithmetic means, and it is not possible to compute an adjusted treatment SS. Latin squares
include an additional blocking matrix (X3) associated with columns; least square means and adjusted
treatment SS are computed using this additional matrix. Lattice designs also include additional blocking
matrices for incomplete blocks in replicates, and for lattice squares, incomplete columns within replicates.
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However, since by design these matrices represent random effects, adjusted treatment means include an
additional analysis step, the recovery of intrablock information as described in (John and Williams 1995).
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